Esta sección incluye una lista de los últimos artículos científicos del IPNA publicados en revistas incluidas en el Science Citation Index (SCI).

En DIGITAL.CSIC, repositorio institucional del CSIC, pueden encontrar el listado completo de artículos científicos desde 1962, así como otras colecciones de interés como congresos, tesis, libros, material divulgativo, etc. del centro. El objetivo de DIGITAL.CSIC es organizar, preservar y difundir en acceso abierto los resultados de nuestra investigación.

En el repositorio institucional del CSIC, pueden encontrar el listado completo de artículos científicos, así como otras colecciones de interés como congresos, tesis, libros, material divulgativo, etc.

Ir a Digital - CSIC


Análisis de la Producción Científica del IPNA 2014-2019: análisis bibliométrico realizado a partir de datos recogidos en Scopus y Web of Science.

Digital CSIC

Rationale and Design of the Impact of Air Pollution Due to DESERT Dust in Patients with HEART Failure (DESERT HEART)

[Aims]: The main objective of this study is to determine whether exposure to Saharan dust causes airway inflammation and oxidative stress in patients with stable chronic heart failure (HF) and a left ventricular ejection fraction of less than 40%. [Methods]: A longitudinal study design is used, involving the inclusion of 40 patients with stable chronic HF and a left ventricular ejection fraction of less than 40%. Four sputum samplings will be taken from each patient, with one sampling taken each week over four consecutive weeks. The sputum samples will be used to analyze the degree of inflammation and oxidative stress. Air quality monitoring stations will be used to analyze the particulate matter (PM) exposure of each patient. The intrusion of desert dust will be identified using meteorological models. There will be 160 scheduled samplings in 40 patients with chronic HF. Mixed regression models will be used to assess the influence of the concentrations of PM (from the episodes of desert dust) upon the airway inflammation and oxidative stress markers. [Conclusion]: The results of this study will test the hypothesis that exposure to high concentrations of Saharan dust affects the normal function of the respiratory epithelium due to the imbalance between the production of free radicals and antioxidant enzymes, thus causing increased pulmonary inflammation and oxidative stress in patients with HF that in turn may facilitate decompensations of their background disease condition.

Domínguez-Rodríguez, Alberto; Avanzas, Pablo; Báez-Ferrer, Néstor; Abreu-González, Pedro; Rodríguez, Sergio; Matos-Castro, Sebastian; Hernández-Vaquero, Daniel.

Journal of Clinical Medicine 12(15): 4990 (2023)

El Hierro Island Volcanological Science: An Overview

El Hierro Island, the youngest of the Canary Islands, and its latest eruption in 2011–2012 have been a playground of fruitful decade-long studies. In this book, we summarize and provide future venues of action to solve outstanding questions. The topics cover geological studies of Holocene volcanism so it informs past, present and future activity. Its active magmatic system from a petrological and geophysical lens. How monitoring of volcanic activity can be optimized and how to read the data streams in a meaningful way. The marine environmental effects of a submarine eruption are covered in detail, as well as how the society could be properly engage to reduce the risks associated to it, and appreciate and benefit from it. So, in each chapter the reader should find inspiration and future challenges waiting to be solved. Remaining puzzles pieces about how volcanism works and how it affects its environment. An effort to provide food for thoughts of future Canary Islands volcanological research, and in particular El Hierro.

González, Pablo J.

El Hierro Island. Active Volcanoes of the World (1): 1-16 (2023)

Lewis Acid-Catalyzed Carbonyl-Ene Reaction: Interplay between Aromaticity, Synchronicity, and Pauli Repulsion

The physical factors governing the catalysis in Lewis acid-promoted carbonyl-ene reactions have been explored in detail quantum chemically. It is found that the binding of a Lewis acid to the carbonyl group directly involved in the transformation greatly accelerates the reaction by decreasing the corresponding activation barrier up to 25 kcal/mol. The Lewis acid makes the process much more asynchronous and the corresponding transition state less in-plane aromatic. The remarkable acceleration induced by the catalyst is ascribed, by means of the activation strain model and the energy decomposition analysis methods, mainly to a significant reduction of the Pauli repulsion between the key occupied π-molecular orbitals of the reactants and not to the widely accepted stabilization of the LUMO of the enophile.

Rodríguez, Humberto A.; Cruz, Daniel A.; Padrón, Juan I.; Fernández, Israel.

The Journal of Organic Chemistry 88, 15: 11102–11110 (2023)

Conversion of Hydroxyproline “Doubly Customizable Units” to Hexahydropyrimidines: Access to Conformationally Constrained Peptides

The efficient transformation of hydroxyproline “doubly customizable units” into rigid hexahydropyrimidine units takes place in good global yields and generates compounds of pharmaceutical interest. In particular, the process can readily provide access to peptidomimetics and peptides with reversed sequences or with valuable turns.

Hernández, Dácil; Porras, Marina; Boto, Alicia.

The Journal of Organic Chemistry, 88, 14: 9910-9919 (2023)

Volcanic ash deposition as a selection mechanism towards woodiness

The high proportion of woody plant species on oceanic islands has hitherto been explained mainly by gradual adaptation to climatic conditions. Here, we present a novel hypothesis that such woodiness is adaptative to volcanic ash (tephra) deposition. Oceanic islands are subject to frequent eruptions with substantial and widespread ash deposition on evolutionary time scales. We postulate that this selects for woodiness through an increased ability to avoid burial of plant organs by ash, and to re-emerge above the new land surface. We sense-checked using observations of plant occurrences and distributions on La Palma (Canary Islands) in April 2022, 4 months after the end of the eruptions of the Tajogaite volcano (Cumbre Vieja ridge). In contrast to herbs and grasses, most woody plants persisted and were already in full flower in areas with 10+ cm ash deposition. Remarkably, these persisting woody plants were almost exclusively endemics.

Beierkuhnlein, Carl; Nogales, Manuel; Field, Richard; Vetaas, Ole R.; Walentowitz, Anna; Weiser, Frank; Stahlmann, Reinhold; Guerrero-Campos, María; Jentsch, Anke; Medina, Félix M.; Chiarucci, Alessandro.

Npj Biodiversity., 2, 14: 1-8 (2023)

Prediction of Antifungal Activity of Antimicrobial Peptides by Transfer Learning from Protein Pretrained Models

Peptides with antifungal activity have gained significant attention due to their potential therapeutic applications. In this study, we explore the use of pretrained protein models as feature extractors to develop predictive models for antifungal peptide activity. Various machine learning classifiers were trained and evaluated. Our AFP predictor achieved comparable performance to current state-of-the-art methods. Overall, our study demonstrates the effectiveness of pretrained models for peptide analysis and provides a valuable tool for predicting antifungal peptide activity and potentially other peptide properties.

Lobo, Fernando; González, Maily Selena; Boto, Alicia; Pérez de Lastra, José Manuel.

International Journal of Molecular Sciences, 24(12), 10270: 1-13 (2023)

El conejo europeo y su impacto en la dispersión de semillas de las plantas nativas de Canarias

El conejo europeo (Oryctolaguscuniculus) es originario del suroeste de Europa y el Norte de África. Esta especie ha viajado con el ser humano hasta los lugares más remotos del mundo, como son las islas, donde ha sido introducido en al menos 800 de éstas, incluyendo la mayoría de las islas macaronésicas (Azores, Madeira, Salvajes y Canarias).

Guerrero Campos, María; González Mancebo, Juana Mª; Nogales, Manuel.

Agropalca, 61: 1 (2023)

Cyanomethyl Vinyl Ethers Against Naegleria fowleri

Naegleria fowleri is a pathogenic amoeba that causes a fulminant and rapidly progressive disease affecting the central nervous system called primary amoebic meningoencephalitis (PAM). Moreover, the disease is fatal in more than 97% of the reported cases, mostly affecting children and young people after practicing aquatic activities in nontreated fresh and warm water bodies contaminated with these amoebae. Currently, the treatment of primary amoebic meningoencephalitis is based on a combination of different antibiotics and antifungals, which are not entirely effective and lead to numerous side effects. In the recent years, research against PAM is focused on the search of novel, less toxic, and fully effective antiamoebic agents. Previous studies have reported the activity of cyano-substituted molecules in different protozoa. Therefore, the activity of 46 novel synthetic cyanomethyl vinyl ethers (QOET-51 to QOET-96) against two type strains of N. fowleri (ATCC 30808 and ATCC 30215) was determined. The data showed that QOET-51, QOET-59, QOET-64, QOET-67, QOET-72, QOET-77, and QOET-79 were the most active molecules. In fact, the selectivity index (CC50/IC50) was sixfold higher when compared to the activities of the drugs of reference. In addition, the mechanism of action of these compounds was studied, with the aim to demonstrate the induction of a programmed cell death process in N. fowleri.

Chao-Pellicer, Javier; Arberas-Jiménez, Íñigo; Delgado-Hernández, Samuel; Sifaoui, Ines; Tejedor, David; García-Tellado, Fernando; Piñero, José E.; Lorenzo-Morales, Jacob.

ACS Chemical Neuroscience, 14(11): 2123–2133 (2023)

Abscisic acid mimic-fluorine derivative 4 alleviates water deficit stress by regulating ABA-responsive genes, proline accumulation, CO2 assimilation, water use efficiency and better nutrient uptake in tomato plants

Water deficit represents a serious limitation for agriculture and both genetic and chemical approaches are being used to cope with this stress and maintain plant yield. Next-generation agrochemicals that control stomatal aperture are promising for controlling water use efficiency. For example, chemical control of abscisic acid (ABA) signaling through ABA-receptor agonists is a powerful method to activate plant adaptation to water deficit. Such agonists are molecules able to bind and activate ABA receptors and, although their development has experienced significant advances in the last decade, few translational studies have been performed in crops. Here, we describe protection by the ABA mimic-fluorine derivative 4 (AMF4) agonist of the vegetative growth in tomato plants subjected to water restriction. Photosynthesis in mock-treated plants is markedly impaired under water deficit conditions, whereas AMF4 treatment notably improves CO2 assimilation, the relative plant water content and growth. As expected for an antitranspirant molecule, AMF4 treatment diminishes stomatal conductance and transpiration in the first phase of the experiment; however, when photosynthesis declines in mock-treated plants as stress persists, higher photosynthetic and transpiration parameters are recorded in agonist-treated plants. Additionally, AMF4 increases proline levels over those achieved in mock-treated plants in response to water deficit. Thus water deficit and AMF4 cooperate to upregulate P5CS1 through both ABA-independent and ABA-dependent pathways, and therefore, higher proline levels are produced Finally, analysis of macronutrients reveals higher levels of Ca, K and Mg in AMF4- compared to mock-treated plants subjected to water deficit. Overall, these physiological analyses reveal a protective effect of AMF4 over photosynthesis under water deficit and enhanced water use efficiency after agonist treatment. In summary, AMF4 treatment is a promising approach for farmers to protect the vegetative growth of tomatoes under water deficit stress.

Jiménez-Arias, David; Morales-Sierra, Sarai; Suárez, Emma; Lozano-Juste, Jorge; Coego, Alberto; Estevez, Juan C.; Borges, Andrés A. ; Rodriguez, Pedro L.

Frontiers in Plant Science 14, 1191967: 1-12 (2023)

Lava dome cycles reveal rise and fall of magma column at Popocatépetl volcano

Lava domes exhibit highly unpredictable and hazardous behavior, which is why imaging their morphological evolution to decipher the underlying governing mechanisms remains a major challenge. Using high-resolution satellite radar imagery enhanced with deep-learning, we image the repetitive dome construction-subsidence cycles at Popocatépetl volcano (Mexico) with very high temporal and spatial resolution. We show that these cycles resemble gas-driven rise and fall of the upper magma column, where buoyant bubble-rich magma is extruded from the conduit (in ~hours-days), and successively drained back (in ~days-months) as magma degasses and crystallizes. These cycles are superimposed on a progressive decadal crater deepening, accompanied by heat and gas flux decrease, which could be partially explained by gas depletion within the magma plumbing system. Results reinforce the idea that gas retention and escape from the magma column play a key role in the short- and long-term morphological evolution of low-viscosity lava domes and their associated hazards.

Valade, Sébastien; Coppola, Diego; Campion, Robin; Ley, Andreas; Boulesteix, Thomas; Taquet, Noémie; Legrand, Denis; Laiolo, Marco; Walter, Thomas R.; De la Cruz-Reyna, Servando.

Nature Communications 14, 3254: 1-13 (2023)